Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 321
Filtrar
1.
Environ Monit Assess ; 196(5): 447, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38607511

RESUMO

Assessing the co-occurrence of multiple health risk factors in coastal ecosystems is challenging due to the complexity of multi-factor interactions and limited availability of simultaneously collected data. Understanding co-occurrence is particularly important for risk factors that may be associated with, or occur in similar environmental conditions. In marine ecosystems, the co-occurrence of harmful algal bloom toxins and bacterial pathogens within the genus Vibrio may impact both ecosystem and human health. This study examined the co-occurrence of Vibrio spp. and domoic acid (DA) produced by the harmful algae Pseudo-nitzschia by (1) analyzing existing California Department of Public Health monitoring data for V. parahaemolyticus and DA in oysters; and (2) conducting a 1-year seasonal monitoring of these risk factors across two Southern California embayments. Existing public health monitoring efforts in the state were robust for individual risk factors; however, it was difficult to evaluate the co-occurrence of these risk factors in oysters due to low number of co-monitoring instances between 2015 and 2020. Seasonal co-monitoring of DA and Vibrio spp. (V. vulnificus or V. parahaemolyticus) at two embayments revealed the co-occurrence of these health risk factors in 35% of sampled oysters in most seasons. Interestingly, both the overall detection frequency and co-occurrence of these risk factors were considerably less frequent in water samples. These findings may in part suggest the slow depuration of Vibrio spp. and DA in oysters as residual levels may be retained. This study expanded our understanding of the simultaneous presence of DA and Vibrio spp. in bivalves and demonstrates the feasibility of co-monitoring different risk factors from the same sample. Individual programs monitoring for different risk factors from the same sample matrix may consider combining efforts to reduce cost, streamline the process, and better understand the prevalence of co-occurring health risk factors.


Assuntos
Ecossistema , Ácido Caínico/análogos & derivados , Vibrio , Humanos , Monitoramento Ambiental , Coleta de Dados
2.
Sci Transl Med ; 16(742): eado1449, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38598617

RESUMO

A study from Long et al. shows that many pathogens that cause surgical site infections during spine surgery come from the patient's own microbiome, suggesting a paradigm shift in the understanding of surgical site infections that questions the effectiveness of current enhanced sterility and antibiotic protocols.


Assuntos
Microbiota , Infecção da Ferida Cirúrgica , Humanos , Infecção da Ferida Cirúrgica/tratamento farmacológico , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico
3.
Nutrients ; 16(7)2024 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-38612969

RESUMO

Pregnancy alters many physiological systems, including the maternal gut microbiota. Diet is a key regulator of this system and can alter the host immune system to promote inflammation. Multiple perinatal disorders have been associated with inflammation, maternal metabolic alterations, and gut microbial dysbiosis, including gestational diabetes mellitus, pre-eclampsia, preterm birth, and mood disorders. However, the effects of high-inflammatory diets on the gut microbiota during pregnancy have yet to be fully explored. We aimed to address this gap using a system-based approach to characterize associations among dietary inflammatory potential, a measure of diet quality, and the gut microbiome during pregnancy. Forty-seven pregnant persons were recruited prior to 16 weeks of gestation. Participants completed a food frequency questionnaire (FFQ) and provided fecal samples. Dietary inflammatory potential was assessed using the Dietary Inflammatory Index (DII) from the FFQ data. Fecal samples were analyzed using 16S rRNA amplicon sequencing. Differential taxon abundances with respect to the DII score were identified, and the microbial metabolic potential was predicted using PICRUSt2. Inflammatory diets were associated with decreased vitamin and mineral intake and a dysbiotic gut microbiota structure and predicted metabolism. Gut microbial compositional differences revealed a decrease in short-chain fatty acid producers such as Faecalibacterium, and an increase in predicted vitamin B12 synthesis, methylglyoxal detoxification, galactose metabolism, and multidrug efflux systems in pregnant individuals with increased DII scores. Dietary inflammatory potential was associated with a reduction in the consumption of vitamins and minerals and predicted gut microbiota metabolic dysregulation.


Assuntos
Deficiência de Vitaminas , Microbioma Gastrointestinal , Nascimento Prematuro , Recém-Nascido , Feminino , Gravidez , Humanos , Disbiose , RNA Ribossômico 16S , Dieta , Vitaminas , Inflamação
4.
Reprod Fertil ; 5(2)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38513356

RESUMO

Abstract: Although numerous studies have demonstrated the impact of microbiome manipulation on human health, research on the microbiome's influence on female health remains relatively limited despite substantial disease burden. In light of this, we present a selected review of clinical trials and preclinical studies targeting both the vaginal and gut microbiomes for the prevention or treatment of various gynecologic conditions. Specifically, we explore studies that leverage microbiota transplants, probiotics, prebiotics, diet modifications, and engineered microbial strains. A healthy vaginal microbiome for females of reproductive age consists of lactic acid-producing bacteria predominantly of the Lactobacillus genus, which serves as a protective barrier against pathogens and maintains a balanced ecosystem. The gut microbiota's production of short-chain fatty acids, metabolism of primary bile acids, and modulation of sex steroid levels have significant implications for the interplay between host and microbes throughout the body, ultimately impacting reproductive health. By harnessing interventions that modulate both the vaginal and gut microbiomes, it becomes possible to not only maintain homeostasis but also mitigate pathological conditions. While the field is still working toward making broad clinical recommendations, the current studies demonstrate that manipulating the microbiome holds great potential for addressing diverse gynecologic conditions. Lay summary: Manipulating the microbiome has recently entered popular culture, with various diets thought to aid the microbes that live within us. These microbes live in different locations of our body and accordingly help us digest food, modulate our immune system, and influence reproductive health. The role of the microbes living in and influencing the female reproductive tract remains understudied despite known roles in common conditions such as vulvovaginal candidiasis (affecting 75% of females in their lifetime), bacterial vaginosis (25% of females in their lifetime), cervical HPV infection (80% of females in their lifetime), endometriosis (6-10% of females of reproductive age), and polycystic ovary syndrome (10-12% of females of reproductive age). Here, we review four different approaches used to manipulate the female reproductive tract and gastrointestinal system microbiomes: microbiota transplants, probiotics, prebiotics, and dietary interventions, and the use of engineered microbial strains. In doing so, we aim to stimulate discussion on new ways to understand and treat female reproductive health conditions.


Assuntos
Microbioma Gastrointestinal , Microbiota , Probióticos , Feminino , Humanos , Animais , Probióticos/uso terapêutico , Prebióticos , Reprodução
5.
BMJ Open ; 14(3): e065498, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38458795

RESUMO

OBJECTIVES: Given the increasing prevalence of obesity and need for effective interventions, there is a growing interest in understanding how an individual's body image can inform obesity prevention and management. This study's objective was to examine the use of silhouette showcards to measure body size perception compared with measured body mass index, and assess body size dissatisfaction, in three different African-origin populations spanning the epidemiological transition. An ancillary objective was to investigate associations between body size perception and dissatisfaction with diabetes and hypertension. SETTING: Research visits were completed in local research clinics in respective countries. PARTICIPANTS: Seven hundred and fifty-one African-origin participants from the USA and the Republic of Seychelles (both high-income countries), and Ghana (low/middle-income country). PRIMARY AND SECONDARY OUTCOME MEASURES: Silhouette showcards were used to measure perceived body size and body size dissatisfaction. Objectively measured body size was measured using a scale and stadiometer. Diabetes was defined as fasting blood glucose ≥126 mg/dL and hypertension was defined as ≥130 mm Hg/80 mm Hg. RESULTS: Most women and men from the USA and Seychelles had 'Perceived minus Actual weight status Discrepancy' scores less than 0, meaning they underestimated their actual body size. Similarly, most overweight or obese men and women also underestimated their body size, while normal weight men and women were accurately able to estimate their body size. Finally, participants with diabetes were able to accurately estimate their body size and similarly desired a smaller body size. CONCLUSIONS: This study highlights that overweight and obese women and men from countries spanning the epidemiological transition were unable to accurately perceive their actual body size. Understanding people's perception of their body size is critical to implementing successful obesity prevention programmes across the epidemiological transition.


Assuntos
Diabetes Mellitus , Hipertensão , Masculino , Humanos , Feminino , Sobrepeso/epidemiologia , Sobrepeso/complicações , Imagem Corporal , Estudos de Coortes , Obesidade/complicações , Índice de Massa Corporal , Hipertensão/epidemiologia , Hipertensão/complicações , Peso Corporal
6.
Artigo em Inglês | MEDLINE | ID: mdl-38426232

RESUMO

OBJECTIVE: Big Data are increasingly used in obesity and nutrition research to gain new insights and derive personalized guidance; however, this data in raw form are often not usable. Substantial preprocessing, which requires machine learning (ML), human judgment, and specialized software, is required to transform Big Data into artificial intelligence (AI)- and ML-ready data. These preprocessing steps are the most complex part of the entire modeling pipeline. Understanding the complexity of these steps by the end user is critical for reducing misunderstanding, faulty interpretation, and erroneous downstream conclusions. METHODS: We reviewed three popular obesity/nutrition Big Data sources: microbiome, metabolomics, and accelerometry. The preprocessing pipelines, specialized software, challenges, and how decisions impact final AI- and ML-ready products were detailed. RESULTS: Opportunities for advances to improve quality control, speed of preprocessing, and intelligent end user consumption were presented. CONCLUSIONS: Big Data have the exciting potential for identifying new modifiable factors that impact obesity research. However, to ensure accurate interpretation of conclusions arising from Big Data, the choices involved in preparing AI- and ML-ready data need to be transparent to investigators and clinicians relying on the conclusions.

7.
Sustain Microbiol ; 1(1): qvad003, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38317688

RESUMO

Microbial communities serve as reservoirs of antibiotic resistance genes (ARGs) and facilitate the dissemination of these genes to bacteria that infect humans. Relatively little is known about the taxonomic distribution of bacteria harboring ARGs in these reservoirs and the avenues of transmission due to the technical hurdles associated with characterizing the contents of complex microbial populations and the assignment of genes to particular genomes. Focusing on the array of tetracycline resistance (Tcr) genes in the primary and secondary phases of wastewater treatment, 17 of the 22 assayed Tcr genes were detected in at least one sample. We then applied emulsion, paired isolation, and concatenation PCR (epicPCR) to link tetracycline resistance genes to specific bacterial hosts. Whereas Tcr genes tend to vary in their distributions among bacterial taxa according to their modes of action, there were numerous instances in which a particular Tcr gene was associated with a host that was distantly related to all other bacteria bearing the same gene, including several hosts not previously identified. Tcr genes are far less host-restricted than previously assumed, indicating that complex microbial communities serve as settings where ARGs are spread among divergent bacterial phyla.

8.
ISME J ; 18(1)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38365248

RESUMO

The microbiome of the built environment comprises bacterial, archaeal, fungal, and viral communities associated with human-made structures. Even though most of these microbes are benign, antibiotic-resistant pathogens can colonize and emerge indoors, creating infection risk through surface transmission or inhalation. Several studies have catalogued the microbial composition and ecology in different built environment types. These have informed in vitro studies that seek to replicate the physicochemical features that promote pathogenic survival and transmission, ultimately facilitating the development and validation of intervention techniques used to reduce pathogen accumulation. Such interventions include using Bacillus-based cleaning products on surfaces or integrating bacilli into printable materials. Though this work is in its infancy, early research suggests the potential to use microbial biocontrol to reduce hospital- and home-acquired multidrug-resistant infections. Although these techniques hold promise, there is an urgent need to better understand the microbial ecology of built environments and to determine how these biocontrol solutions alter species interactions. This review covers our current understanding of microbial ecology of the built environment and proposes strategies to translate that knowledge into effective biocontrol of antibiotic-resistant pathogens.


Assuntos
Bacillus , Microbiota , Humanos , Bactérias/genética , Antibacterianos , Ambiente Construído
9.
Mol Neurodegener ; 19(1): 18, 2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38365827

RESUMO

It has recently become well-established that there is a connection between Alzheimer's disease pathology and gut microbiome dysbiosis. We have previously demonstrated that antibiotic-mediated gut microbiota perturbations lead to attenuation of Aß deposition, phosphorylated tau accumulation, and disease-associated glial cell phenotypes in a sex-dependent manner. In this regard, we were intrigued by the finding that a marine-derived oligosaccharide, GV-971, was reported to alter gut microbiota and reduce Aß amyloidosis in the 5XFAD mouse model that were treated at a point when Aß burden was near plateau levels. Utilizing comparable methodologies, but with distinct technical and temporal features, we now report on the impact of GV-971 on gut microbiota, Aß amyloidosis and microglial phenotypes in the APPPS1-21 model, studies performed at the University of Chicago, and independently in the 5X FAD model, studies performed at Washington University, St. Louis.Methods To comprehensively characterize the effects of GV-971 on the microbiota-microglia-amyloid axis, we conducted two separate investigations at independent institutions. There was no coordination of the experimental design or execution between the two laboratories. Indeed, the two laboratories were not aware of each other's experiments until the studies were completed. Male and female APPPS1-21 mice were treated daily with 40, 80, or 160 mg/kg of GV-971 from 8, when Aß burden was detectable upto 12 weeks of age when Aß burden was near maximal levels. In parallel, and to corroborate existing published studies and further investigate sex-related differences, male and female 5XFAD mice were treated daily with 100 mg/kg of GV-971 from 7 to 9 months of age when Aß burden was near peak levels. Subsequently, the two laboratories independently assessed amyloid-ß deposition, metagenomic, and neuroinflammatory profiles. Finally, studies were initiated at the University of Chicago to evaluate the metabolites in cecal tissue from vehicle and GV-971-treated 5XFAD mice.Results These studies showed that independent of the procedural differences (dosage, timing and duration of treatment) between the two laboratories, cerebral amyloidosis was reduced primarily in male mice, independent of strain. We also observed sex-specific microbiota differences following GV-971 treatment. Interestingly, GV-971 significantly altered multiple overlapping bacterial species at both institutions. Moreover, we discovered that GV-971 significantly impacted microbiome metabolism, particularly by elevating amino acid production and influencing the tryptophan pathway. The metagenomics and metabolomics changes correspond with notable reductions in peripheral pro-inflammatory cytokine and chemokine profiles. Furthermore, GV-971 treatment dampened astrocyte and microglia activation, significantly decreasing plaque-associated reactive microglia while concurrently increasing homeostatic microglia only in male mice. Bulk RNAseq analysis unveiled sex-specific changes in cerebral cortex transcriptome profiles, but most importantly, the transcriptome changes in the GV-971-treated male group revealed the involvement of microglia and inflammatory responses.Conclusions In conclusion, these studies demonstrate the connection between the gut microbiome, neuroinflammation, and Alzheimer's disease pathology while highlighting the potential therapeutic effect of GV-971. GV-971 targets the microbiota-microglia-amyloid axis, leading to the lowering of plaque pathology and neuroinflammatory signatures in a sex-dependent manner when given at the onset of Aß deposition or when given after Aß deposition is already at higher levels.


Assuntos
Doença de Alzheimer , Amiloidose , Microbioma Gastrointestinal , Humanos , Camundongos , Masculino , Feminino , Animais , Doença de Alzheimer/metabolismo , Microglia/metabolismo , Camundongos Transgênicos , Amiloidose/metabolismo , Peptídeos beta-Amiloides/metabolismo , Placa Amiloide/patologia , Amiloide/metabolismo , Proteínas Amiloidogênicas/metabolismo , Modelos Animais de Doenças
10.
J Appl Microbiol ; 135(2)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38305096

RESUMO

AIMS: Gastrointestinal disease is a leading cause of morbidity in bottlenose dolphins (Tursiops truncatus) under managed care. Fecal microbiota transplantation (FMT) holds promise as a therapeutic tool to restore gut microbiota without antibiotic use. This prospective clinical study aimed to develop a screening protocol for FMT donors to ensure safety, determine an effective FMT administration protocol for managed dolphins, and evaluate the efficacy of FMTs in four recipient dolphins. METHODS AND RESULTS: Comprehensive health monitoring was performed on donor and recipient dolphins. Fecal samples were collected before, during, and after FMT therapy. Screening of donor and recipient fecal samples was accomplished by in-house and reference lab diagnostic tests. Shotgun metagenomics was used for sequencing. Following FMT treatment, all four recipient communities experienced engraftment of novel microbial species from donor communities. Engraftment coincided with resolution of clinical signs and a sustained increase in alpha diversity. CONCLUSION: The donor screening protocol proved to be safe in this study and no adverse effects were observed in four recipient dolphins. Treatment coincided with improvement in clinical signs.


Assuntos
Golfinho Nariz-de-Garrafa , Microbioma Gastrointestinal , Animais , Transplante de Microbiota Fecal/métodos , Estudos Prospectivos , Fezes , Resultado do Tratamento
11.
medRxiv ; 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38076865

RESUMO

Background: Pregnancy alters many physiological systems, including the maternal gut microbiota. Diet is a key regulator of this system and can alter the host immune system to promote inflammation. Multiple perinatal disorders have been associated with inflammation, maternal metabolic alterations, and gut microbial dysbiosis, including gestational diabetes mellitus, preeclampsia, preterm birth, and mood disorders. However, the effects of high inflammatory diets on the gut microbiota during pregnancy have yet to be fully explored. Objective: To use a systems-based approach to characterize associations among dietary inflammatory potential, a measure of diet quality, and the gut microbiome during pregnancy. Methods: Forty-nine pregnant persons were recruited prior to 16 weeks of gestation. Participants completed a food frequency questionnaire (FFQ) and provided fecal samples. Dietary inflammatory potential was assessed using the Dietary Inflammatory Index (DII) from FFQ data. Fecal samples were analyzed using 16S rRNA amplicon sequencing. Differential taxon abundance with respect to DII score were identified, and microbial metabolic potential was predicted using PICRUSt2. Results: Inflammatory diets were associated with decreased vitamin and mineral intake and dysbiotic gut microbiota structure and predicted metabolism. Gut microbial compositional differences revealed a decrease in short chain fatty acid producers such as Faecalibacterium, and an increase in predicted vitamin B12 synthesis, methylglyoxal detoxification, galactose metabolism and multi drug efflux systems in pregnant individuals with increased DII scores. Conclusions: Dietary inflammatory potential was associated with a reduction in the consumption of vitamins & minerals and predicted gut microbiota metabolic dysregulation.

12.
Post Reprod Health ; 29(4): 187-189, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38059588
13.
Artigo em Inglês | MEDLINE | ID: mdl-38051927

RESUMO

RATIONALE: Oral microbiota associate with diseases of the mouth and serve as a source of lung microbiota. However, the role of oral microbiota in lung disease is unknown. OBJECTIVES: To determine associations between oral microbiota and disease severity and death in idiopathic pulmonary fibrosis. METHODS: We analyzed 16S rRNA gene and shotgun metagenomic sequencing data of buccal swabs from 511 patients with idiopathic pulmonary fibrosis in the multicenter CleanUP-IPF trial. Buccal swabs were collected from usual care, and antimicrobial cohorts. Microbiome data was correlated with measures of disease severity using principal component analysis and linear regression models. Associations between the buccal microbiome and mortality were determined using Cox additive models, Kaplan Meier analysis and Cox proportional hazards models. MEASUREMENTS AND MAIN RESULTS: Greater buccal microbial diversity associated with lower forced vital capacity (FVC) at baseline [mean diff -3.60: 95% CI -5.92 to -1.29 percent predicted FVC per 1 unit increment]. The buccal proportion of Streptococcus correlated positively with FVC [mean diff 0.80: 95% CI 0.16-1.43 percent predicted per 10% increase] (n=490). Greater microbial diversity was associated with an increased risk of death [HR 1.73: 95% CI 1.03-2.90] while a greater proportion of Streptococcus was associated with a reduced risk of death [HR 0.85: 95% CI 0.73 to 0.99]. The Streptococcus genus was mainly comprised of Streptococcus mitis species. CONCLUSIONS: Increasing buccal microbial diversity predicts disease severity and death in IPF. The oral commensal Streptococcus mitis spp associates with preserved lung function and improved survival.

14.
Microbiol Mol Biol Rev ; 87(4): e0012121, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38047636

RESUMO

SUMMARYOver the past decade, hundreds of studies have characterized the microbial communities found in human-associated built environments (BEs). These have focused primarily on how the design and use of our built spaces have shaped human-microbe interactions and how the differential selection of certain taxa or genetic traits has influenced health outcomes. It is now known that the more removed humans are from the natural environment, the greater the risk for the development of autoimmune and allergic diseases, and that indoor spaces can be harsh, selective environments that can increase the emergence of antimicrobial-resistant and virulent phenotypes in surface-bound communities. However, despite the abundance of research that now points to the importance of BEs in determining human-microbe interactions, only a fraction of non-human animal structures have been comparatively explored. It is here, in the context of human-associated BE research, that we consider the microbial ecology of animal-built natural nests and burrows, as well as artificial enclosures, and point to areas of primary interest for future research.


Assuntos
Ambiente Construído , Microbiologia Ambiental , Animais , Humanos
15.
Artigo em Inglês | MEDLINE | ID: mdl-38070037

RESUMO

Commensal microbiome-based health support is gaining respect in the medical community and new human gut-associated Lactic Acid Bacteria (LAB) strains must be evaluated for their probiotic potential. Here we characterized the phenotype and genomes of human ileocecal mucosa-associated LAB strains using metagenomic sequencing and in vitro testing. The strains characterized belonged to the genus Enterococcus (Enterococcus lactis NPL1366, NPL1371, and Enterococcus mundtii NPL1379) and Lactobacillus (Lactobacillus paragasseri, NPL1369, NPL1370, and Lactiplantibacillus plantarum NPL1378). Genome annotation suggested bacterial adaptation to both human physiological and industrial manufacturing-related stressors. Genes for histidine kinases in enterococci and Na + /K + antiporters and F0F1 ATP synthases in Lactobacillus strains may support their tolerance to acid seen in vitro. The bile salt hydrolase (BSH) gene in Lp. plantarum and L. paragasseri may help explain their reported bile salt deconjugation and cholesterol-lowering behavior. Thioredoxin is the principal antioxidant system, and several oxidases and general stress-related proteins are found in lactobacilli, most notably in L. plantarum NPL1378. Multiple adhesion and biofilm-related genes were predicted in the LAB genomes. Adhesion and biofilm-related genes figured prominently in the genomes of enterococcal strains, especially E. lactis, corresponding to its biofilm formation capacity in vitro. Bacteriocin and secondary metabolite biosynthetic gene clusters in the sequenced genomes of E. lactis NPL1366 and Lp. plantarum NPL1378 may explain their in vitro pathogenic antagonism. Moreover, folate producing Lp. plantarum strain holds potential to be used in therapeutics or biofortification of food. All the strains were deemed safe through in vitro and in silico analysis. This basic genetic and phenotypic information supports their contention as probiotic adjuncts to conventional medical therapy.

16.
mBio ; : e0109123, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-37975666

RESUMO

There is concern that the time taken to publish academic papers in microbiological science has significantly increased in recent years. While the data do not specifically support this, evidence suggests that editors are having to invite more and more reviewers to identify those willing to perform peer review.

17.
Nat Commun ; 14(1): 5160, 2023 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-37620311

RESUMO

The relationship between microbiota, short chain fatty acids (SCFAs), and obesity remains enigmatic. We employ amplicon sequencing and targeted metabolomics in a large (n = 1904) African origin cohort from Ghana, South Africa, Jamaica, Seychelles, and the US. Microbiota diversity and fecal SCFAs are greatest in Ghanaians, and lowest in Americans, representing each end of the urbanization spectrum. Obesity is significantly associated with a reduction in SCFA concentration, microbial diversity, and SCFA synthesizing bacteria, with country of origin being the strongest explanatory factor. Diabetes, glucose state, hypertension, obesity, and sex can be accurately predicted from the global microbiota, but when analyzed at the level of country, predictive accuracy is only universally maintained for sex. Diabetes, glucose, and hypertension are only predictive in certain low-income countries. Our findings suggest that adiposity-related microbiota differences differ between low-to-middle-income compared to high-income countries. Further investigation is needed to determine the factors driving this association.


Assuntos
Microbioma Gastrointestinal , Hipertensão , Microbiota , Humanos , Microbioma Gastrointestinal/genética , Adiposidade , Gana/epidemiologia , Obesidade/epidemiologia , Ácidos Graxos Voláteis , Glucose
18.
mSystems ; 8(4): e0035723, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37534938

RESUMO

The cervicovaginal microbiota is influenced by host physiology, immunology, lifestyle, and ethnicity. We hypothesized that there would be differences in the cervicovaginal microbiota among pregnant, nonpregnant, and menopausal women living in Puerto Rico (PR) with and without human papillomavirus (HPV) infection and cervical cancer. We specifically wanted to determine if the microbiota is associated with variations in cervical cytology. A total of 294 women, including reproductive-age nonpregnant (N = 196), pregnant (N = 37), and menopausal (N = 61) women, were enrolled. The cervicovaginal bacteria were characterized by 16S rRNA amplicon sequencing, the HPV was genotyped with SPF10-LiPA, and cervical cytology was quantified. High-risk HPV (HR-HPV, 67.3%) was prevalent, including genotypes not covered by the 9vt HPV vaccine. Cervical lesions (34%) were also common. The cervical microbiota was dominated by Lactobacillus iners. Pregnant women in the second and third trimesters exhibited a decrease in diversity and abundance of microbes associated with bacterial vaginosis. Women in menopause had greater alpha diversity, a greater proportion of facultative and strictly anaerobic bacteria, and higher cervicovaginal pH than premenopausal women. Cervical lesions were associated with greater alpha diversity. However, no significant associations between the microbiota and HPV infection (HR or LR-HPV types) were found. The cervicovaginal microbiota of women living in Puerto Rican were either dominated by L. iners or diverse microbial communities regardless of a woman's physiological stage. We postulate that the microbiota and the high prevalence of HR-HPV increase the risk of cervical lesions among women living in PR. IMPORTANCE In the enclosed manuscript, we provide the first in-depth characterization of the cervicovaginal microbiota of Hispanic women living in Puerto Rico (PR), using a 16S rRNA approach, and include women of different physiological stages. Surprisingly we found that high-risk HPV was ubiquitous with a prevalence of 67.3%, including types not covered by the 9vt HPV vaccine. We also found highly diverse microbial communities across women groups-with a reduction in pregnant women, but dominated by nonoptimal Lactobacillus iners. Additionally, we found vaginosis-associated bacteria as Dialister spp., Gardnerella spp., Clostridium, or Prevotella among most women. We believe this is a relevant and timely article expanding knowledge on the cervicovaginal microbiome of PR women, where we postulate that these highly diverse communities are conducive to cervical disease.


Assuntos
Colo do Útero , Microbiota , Infecções por Papillomavirus , Feminino , Humanos , Gravidez , Bactérias/genética , Hispânico ou Latino , Microbiota/genética , Infecções por Papillomavirus/epidemiologia , Porto Rico/epidemiologia , RNA Ribossômico 16S/genética , Colo do Útero/microbiologia
19.
Appl Environ Microbiol ; 89(7): e0031823, 2023 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-37318344

RESUMO

Oysters play an important role in coastal ecology and are a globally popular seafood source. However, their filter-feeding lifestyle enables coastal pathogens, toxins, and pollutants to accumulate in their tissues, potentially endangering human health. While pathogen concentrations in coastal waters are often linked to environmental conditions and runoff events, these do not always correlate with pathogen concentrations in oysters. Additional factors related to the microbial ecology of pathogenic bacteria and their relationship with oyster hosts likely play a role in accumulation but are poorly understood. In this study, we investigated whether microbial communities in water and oysters were linked to accumulation of Vibrio parahaemolyticus, Vibrio vulnificus, or fecal indicator bacteria. Site-specific environmental conditions significantly influenced microbial communities and potential pathogen concentrations in water. Oyster microbial communities, however, exhibited less variability in microbial community diversity and accumulation of target bacteria overall and were less impacted by environmental differences between sites. Instead, changes in specific microbial taxa in oyster and water samples, particularly in oyster digestive glands, were linked to elevated levels of potential pathogens. For example, increased levels of V. parahaemolyticus were associated with higher relative abundances of cyanobacteria, which could represent an environmental vector for Vibrio spp. transport, and with decreased relative abundance of Mycoplasma and other key members of the oyster digestive gland microbiota. These findings suggest that host and microbial factors, in addition to environmental variables, may influence pathogen accumulation in oysters. IMPORTANCE Bacteria in the marine environment cause thousands of human illnesses annually. Bivalves are a popular seafood source and are important in coastal ecology, but their ability to concentrate pathogens from the water can cause human illness, threatening seafood safety and security. To predict and prevent disease, it is critical to understand what causes pathogenic bacteria to accumulate in bivalves. In this study, we examined how environmental factors and host and water microbial communities were linked to potential human pathogen accumulation in oysters. Oyster microbial communities were more stable than water communities, and both contained the highest concentrations of Vibrio parahaemolyticus at sites with warmer temperatures and lower salinities. High oyster V. parahaemolyticus concentrations corresponded with abundant cyanobacteria, a potential vector for transmission, and a decrease in potentially beneficial oyster microbes. Our study suggests that poorly understood factors, including host and water microbiota, likely play a role in pathogen distribution and pathogen transmission.


Assuntos
Bivalves , Ostreidae , Vibrio parahaemolyticus , Vibrio vulnificus , Animais , Humanos , Água , Ostreidae/microbiologia , Bactérias/genética
20.
Nat Neurosci ; 26(7): 1208-1217, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37365313

RESUMO

Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by heterogeneous cognitive, behavioral and communication impairments. Disruption of the gut-brain axis (GBA) has been implicated in ASD although with limited reproducibility across studies. In this study, we developed a Bayesian differential ranking algorithm to identify ASD-associated molecular and taxa profiles across 10 cross-sectional microbiome datasets and 15 other datasets, including dietary patterns, metabolomics, cytokine profiles and human brain gene expression profiles. We found a functional architecture along the GBA that correlates with heterogeneity of ASD phenotypes, and it is characterized by ASD-associated amino acid, carbohydrate and lipid profiles predominantly encoded by microbial species in the genera Prevotella, Bifidobacterium, Desulfovibrio and Bacteroides and correlates with brain gene expression changes, restrictive dietary patterns and pro-inflammatory cytokine profiles. The functional architecture revealed in age-matched and sex-matched cohorts is not present in sibling-matched cohorts. We also show a strong association between temporal changes in microbiome composition and ASD phenotypes. In summary, we propose a framework to leverage multi-omic datasets from well-defined cohorts and investigate how the GBA influences ASD.


Assuntos
Transtorno do Espectro Autista , Microbioma Gastrointestinal , Humanos , Microbioma Gastrointestinal/genética , Eixo Encéfalo-Intestino , Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/metabolismo , Estudos Transversais , Teorema de Bayes , Reprodutibilidade dos Testes , Citocinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...